well with those found in other octahedrally coordinated tris(phenanthroline)-metal complexes (Zalkin, Templeton \& Ueki, 1973) and in molecular phenanthroline (Nishigaki, Yoshioka \& Nakatsu, 1978). They exhibit somewhat different planarities with maximum deviations of the atoms from their least-squares planes of 0.031 (11), 0.035 (9) and 0.064 (10) \AA in phen (1), phen (2) and phen (3), respectively, and dihedral angles $1-2=92 \cdot 4,1-3=97 \cdot 2$ and $2-3=97 \cdot 2^{\circ}\left(\sigma<1 \cdot 0^{\circ}\right)$.
$\mathrm{Co}-\mathrm{N}$ bond lengths and $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bite angles fall within the expected range. The main difference from the $\mathrm{Cu}^{\text {II }}$ analogue lies essentially in the coordination bond geometry. The $\mathrm{Cu}^{\text {II }}$ complex exhibits two long and four short $\mathrm{Cu}-\mathrm{N}$ bonds giving rise to a tetragonally distorted octahedral coordination which was considered typical of a static Jahn-Teller distortion. The substantially longer axial bond lengths have a mean of 2.328 (10) \AA while the four equatorial short bonds have a mean of 2.037 (30) \AA (standard deviations based on spread in values). The lengthening of one of the bonds in two of the ligands produces a decrease in the corresponding $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ bite angles with a mean of $76.9(4)^{\circ}$ while the ligand with no bond distortion has a bite angle of $81.6(5)^{\circ}$. In the Co^{11} complex the coordinating ligands exhibit similar, though not equal (errors considered), bond distances and bite angles (Table 2).

The packing of the structure is mainly achieved by Coulomb and van der Waals interactions with the uncoordinated perchlorate anions and water molecules occupying the cavities between the complex cations. The particular orientation of $\mathrm{Cl}(3)$ perchlorate, incompatible with the site symmetry, may be attributed to strong geometrical restrictions imposed by the cavity.

There are some very close proximities of the perchlorate O atoms to the surrounding phenanthroline C atoms, many of them via H atoms. The water molecule appears to be hydrogen-bonded to $\mathrm{Cl}(1)$ perchlorate with an estimated distance $\mathrm{O}(\mathrm{H}) \cdots \mathrm{O}(12)=2.98(3) \AA$.

The authors are grateful to Mrs I. Mascarenhas from the Inst. de Física e Quimica de São Carlos, Brasil, for providing facilities for the use of the Nonius CAD-4 diffractometer. This work has been partially supported by the Departamento de Desarrollo de la Investigación de la Universidad de Chile under contract No. E935-8345.

References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1973). NRC Crystallographic Programs for the IBM/360 System. Accession Nos. 133-147 in J. Appl. Cry'st. (1973). 6, 309-346.
Anderson, O. P. (1973). J. Chem. Soc. Dalton Trans. pp. 1237-1241.
Cromer, D. T. \& Mann, J. B. (1968). Acta Crist. A24, 321-324.
Escobar, C. \& Garland, M. T. (1970). Büll. Soc. Fr. Minéral. Cristallogr. 93, 504.
International Tables for X-ray' Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Nishigaki, S., Yoshoka, H. \& Nakatsu, K. (1978). Acta Cryst. B34, 875-879.
Simmons, C. J., Seff, K., Clifford, F. \& Hathaway, B. J. (1983). Acta Cryst. C39, 1360-1367.

Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon. H. L., Heck, H. \& Flack, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland. College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Zalkin, A., Templeton, D. H. \& Ueki. T. (1973). Inorg. Chem. 12, 1641-1646.

μ-Oxo-bis $\{[$ hydrotris(3,5-dimethyl-1-pyrazolyl)borato]dioxomolybdenum(VI) \}, $\mathbf{M o}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BN}_{6}\right)_{2} \mathbf{O}_{5}$

By Kerry M. Barnhart and John H. Enemark
Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA

(Received 1 February 1984; accepted 25 April 1984)

Abstract

M_{r}=866\), monoclinic, $\quad C 2 / c, \quad a=$ 28.253 (11), $\quad b=9.550(2), \quad c=15.761(5) \AA, \quad \beta=$ $115.78(3)^{\circ}, \quad V=3829.3 \AA^{3}, \quad Z=4, \quad D_{m}=1.51(1)$, $D_{x}=1.50 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71073 \AA, \quad \mu=$ $6.310 \mathrm{~cm}^{-1}, F(000)=1132$, room temperature, $R=$ $0.028, w R=0.038$ for 2576 reflections. The molecule

0108-2701/84/081362-03\$01.50
contains an $\mathrm{O}_{2} \mathrm{MoOMoO}_{2}$ core with the bridging O atom lying on a crystallographic twofold axis. The Mo-O-Mo angle is 167.1 (2) ${ }^{\circ}$. The tridentate ligand is coordinated through the N atoms. The Mo-N distance trans to the bridging O atom is significantly shorter than those trans to terminal O atoms.

(c) 1984 International Union of Crystallography

Introduction. We have been investigating the synthesis and properties of sterically hindered molybdenum compounds as models for the active sites of certain molybdenum-containing enzymes. The bulky tridentate ligand, hydrotris(3,5-dimethyl-1-pyrazolyl)borate, stabilizes monomeric Mo compounds of oxidation states IV, V and VI, and constrains the co-ligands to fac stereochemistry. During the course of our investigations, we have also isolated a binuclear $\mathrm{Mo}^{{ }^{v_{1}}}$ complex containing an $\mathrm{O}_{2} \mathrm{MoOMoO}_{2}$ core. Such compounds are still relatively rare.

Experimental. Crystal $0.3 \times 0.1 \times 0.3 \mathrm{~mm}$, sealed in epoxy, D_{m} by flotation (ZnBr_{2} and $\mathrm{H}_{2} \mathrm{O}$), mirror-plane symmetry element observed on b-axis X-ray photograph, indicating $C 2 / c, 25$ reflections for measuring lattice parameters, Syntex $P 2_{1}$ four-circle diffractometer, graphite-monochromated Mo K $\alpha, \theta-2 \theta$ scans, $2 \theta_{\text {max }}=50^{\circ}, \quad-31 \leq h \leq 30, \quad 0 \leq k \leq 11, \quad 0 \leq l \leq 17$, standard reflections $800,040,006$, no change; 3355 reflections measured, 2576 with $I>3 \sigma(I)$ used in refinement; coordinates of Mo readily obtained from Patterson calculations, 25 non-hydrogen atoms from difference Fourier map, full-matrix least squares on F, all non-hydrogen atoms anisotropic, no hydrogen atoms located, H atoms calculated and introduced at idealized positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$) with isotropic temperature factor 1.5 times that of atom to which it is bonded; $R=0.028, w R=0.038, w^{-2}=\sigma^{2}\left(F_{o}\right)+\left(c F_{o}\right)^{2}$, $c=0.03, \Delta / \sigma=0.09$, max. height in difference map $1.221 \mathrm{e} \AA^{-3}$; scattering factors for non-hydrogen atoms from Cromer \& Waber (1974), Structure Determination Package (Frenz, 1978) for structure determination and refinement.*

Discussion. Atomic coordinates and isotropic thermal parameters are listed in Table 1 and selected interatomic distances and bond angles in Table 2. $\mathrm{O}(3)$ is the bridging atom lying on the twofold axis, while O (1) and $\mathrm{O}(2)$ are the terminal atoms. Table 3 compares the distances and bond angles found in the $\mathrm{O}_{2} \mathrm{MoOMoO}_{2}$ core of $\mathrm{Mo}_{2} \mathrm{O}_{5}\left[\mathrm{HB}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{3}\right]_{2}$ to those found in other complexes containing the same core. Fig. 1 shows the molecular structure.

The terminal and bridging oxo groups adopt $f a c$ stereochemistry. In the known oxo-bridged dinuclear $\mathrm{Mo}^{\text {VI }}$ complexes which contain no other bridging ligands, the Mo-O-Mo angle ranges from strictly 180° (Cotton, Morehouse \& Wood, 1964) to 136° (Stomberg, 1968) (Table 3). The present structure has

[^0]Table 1. Atomic coordinates and equivalent isotropic thermal parameters

Isotropic equivalent thermal parameters are defined as $[U(1,1)+$ $U(2,2)+U(3,3)] / 3$.

	x	y	z	$U_{\text {eq }}\left(\AA^{2} \times 10^{3}\right)$
Mo	$0.06748(1)$	$0.26039(3)$	$0.25440(2)$	$31.6(2)$
$\mathrm{N}(11)$	$0.07525(9)$	$0.0191(3)$	$0.2698(2)$	$31(2)$
$\mathrm{N}(21)$	$0.09662(9)$	$0.2461(3)$	$0.4159(2)$	$38(2)$
$\mathrm{N}(31)$	$0.15300(9)$	$0.2287(3)$	$0.3069(2)$	$35(2)$
$\mathrm{O}(1)$	$0.07689(9)$	$0.4365(3)$	$0.2676(2)$	$51(2)$
$\mathrm{O}(2)$	$0.05773(9)$	$0.2340(2)$	$0.1416(2)$	$46(2)$
$\mathrm{O}(3)$	0.000	$0.2382(3)$	0.250	$41(2)$
$\mathrm{N}(12)$	$0.11423(9)$	$-0.0472(3)$	$0.3455(2)$	$34(2)$
$\mathrm{C}(11)$	$0.1089(1)$	$-0.1871(3)$	$0.3343(2)$	$38(2)$
$\mathrm{C}(12)$	$0.1460(2)$	$-0.2869(4)$	$0.4042(3)$	$63(2)$
$\mathrm{C}(13)$	$0.0660(1)$	$-0.2126(3)$	$0.2505(2)$	$39(2)$
$\mathrm{C}(14)$	$0.0458(1)$	$-0.0829(3)$	$0.2114(2)$	$33(2)$
$\mathrm{C}(15)$	$0.0010(1)$	$-0.0543(4)$	$0.1187(2)$	$41(2)$
$\mathrm{N}(22)$	$0.12645(9)$	$0.1350(3)$	$0.4675(2)$	$39(2)$
$\mathrm{C}(21)$	$0.1281(1)$	$0.1358(4)$	$0.5542(2)$	$52(2)$
$\mathrm{C}(23)$	$0.1003(1)$	$0.2516(5)$	$0.5591(2)$	$59(2)$
$\mathrm{C}(22)$	$0.1531(2)$	$0.0231(5)$	$0.6241(3)$	$73(2)$
$\mathrm{C}(24)$	$0.0814(1)$	$0.3174(4)$	$0.4730(2)$	$46(2)$
$\mathrm{C}(25)$	$0.0493(1)$	$0.4486(4)$	$0.4442(3)$	$64(2)$
$\mathrm{N}(32)$	$0.18178(9)$	$0.1383(3)$	$0.3785(2)$	$32(2)$
$\mathrm{C}(31)$	$0.2322(1)$	$0.1412(4)$	$0.3924(2)$	$38(2)$
$\mathrm{C}(32)$	$0.2745(1)$	$0.0571(4)$	$0.4660(3)$	$53(2)$
$\mathrm{C}(33)$	$0.2358(1)$	$0.2352(4)$	$0.3296(2)$	$50(2)$
$\mathrm{C}(34)$	$0.1860(1)$	$0.2881(4)$	$0.2774(2)$	$43(2)$
$\mathrm{C}(35)$	$0.1685(2)$	$0.3956(5)$	$0.2012(3)$	$68(2)$
B	$0.1549(1)$	$0.0434(4)$	$0.4236(3)$	$37(2)$

Table 2. Selected interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$

$\mathrm{Mo}-\mathrm{N}(11)$	$2.318(2)$	$\mathrm{Mo}-\mathrm{O}(1)$	$1.701(2)$
$\mathrm{Mo}-\mathrm{N}(21)$	$2.314(2)$	$\mathrm{Mo}-\mathrm{O}(3)$	$1.889(1)$
$\mathrm{Mo}-\mathrm{N}(31)$	$2.208(2)$	$\mathrm{Mo}-\mathrm{O}(2)$	$1.696(2)$
$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(21)$	$81.59(7)$	$\mathrm{N}(31)-\mathrm{Mo}-\mathrm{O}(1)$	$90.14(9)$
$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(31)$	$77.64(7)$	$\mathrm{N}(31)-\mathrm{Mo}-\mathrm{O}(3)$	$157.02(7)$
$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{O}(1)$	$165.34(9)$	$\mathrm{N}(31)-\mathrm{Mo}-\mathrm{O}(2)$	$91.42(9)$
$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{O}(3)$	$86.57(9)$	$\mathrm{O}(1)-\mathrm{Mo}-\mathrm{O}(3)$	$102.5(1)$
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{O}(2)$	$85.83(8)$	$\mathrm{O}(1)-\mathrm{Mo}-\mathrm{O}(2)$	$102.7(1)$
$\mathrm{N}(21)-\mathrm{Mo}-\mathrm{N}(31)$	$76.82(8)$	$\mathrm{O}(3)-\mathrm{Mo}-\mathrm{O}(2)$	$104.11(7)$
$\mathrm{N}(21)-\mathrm{Mo}-\mathrm{O}(1)$	$87.82(9)$		
$\mathrm{N}(21)-\mathrm{Mo}-\mathrm{O}(3)$	$84.50(5)$		
$\mathrm{N}(21)-\mathrm{Mo}-\mathrm{O}(2)$	$164.32(8)$		
$\mathrm{Mo}-\mathrm{O}(3)-\mathrm{Mo}^{1}$	$167.1(2)$		

Numbers in parentheses are estimated standard deviations in the least significant digits. Symmetry operation for equivalent atoms: (i) $-x, y,-\frac{1}{2}-z$.

Fig. 1. The structure of $\mathrm{Mo}_{2} \mathrm{O}_{5}\left|\mathrm{HB}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{3}\right|_{2}$. The numbering of atoms in the pyrazole rings containing $\mathrm{N}(11)$ and $\mathrm{N}(21)$ parallels that shown for the ring containing $\mathrm{N}(31)$.

$$
\mathrm{Mo}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BN}_{6}\right)_{2} \mathrm{O}_{5}
$$

Table 3. Comparison of distances and angles in $\mathrm{Mo}_{2} \mathrm{O}_{5}^{2+}$ complexes

$\mathrm{O} t=$ terminal oxygen; $\mathrm{O} b=$ bridging oxygen.				
	Mo-O-Mo (${ }^{\circ}$)	$\mathrm{Mo}-\mathrm{O} b(\AA)$	$\mathrm{Mo}-\mathrm{O} t(\AA)$	Reference
$\mathrm{Mo}_{2} \mathrm{O}_{5}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$	180	1.876	1.68, 1.70	(a)
$\left[\mathrm{Mo}_{2} \mathrm{O}_{5}\left(\mathrm{O}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} / \mathrm{K}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$	136.1	1.93	1.66	(b)
$\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{DMF})_{4} \mathrm{Cl}_{2}$	171	1.90	1.68	(c)
$\mathrm{Mo}_{2} \mathrm{O}_{5}(\text { phen })_{2}(\mathrm{NCS})_{2}$	162.7	$1.865,1.885$	$\begin{aligned} & 1.685,1.688 \\ & 1.691,1.694 \end{aligned}$	(d)
$\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{Hnta})_{2}{ }^{*}$	180	1.88	1.68, 1.71	(e)
$\left.\mathrm{Mo}_{2} \mathrm{O}_{5} \mathrm{I}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}\right]_{2}$	143.8	$1.929,1.917$	$\begin{aligned} & 1.715,1.715 \\ & 1.714,1.709 \end{aligned}$	($)$
$\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{NCS})_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{4}$	180	1.864	1.691, 1.686	(g)
$\mathrm{Mo}_{2} \mathrm{O}_{5} \mid \mathrm{HB}\left(\mathrm{Me}_{2} \mathrm{pz}\right)_{3} \mathrm{l}_{2}$	$167 \cdot 1$	1.889	1.701, 1.696	(h)

References: (a) Cotton et al. (1964); (b) Stomberg (1968); (c) Atovmyan, Sokovova \& Thachey (1970); (d) Viossat \& Rodier (1981): (e) Knobler, Robinson, Wilkins \& Wilson (1983); (f) Marabella et al. (1983); (g) Shibahara, Kuroya, Ooi \& Mori (1983): (h) this work.

* Hnta $=$ nitrilotriacetate(2-).
an $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ angle of $167 \cdot 1^{\circ}$. Both the bridging Mo-O distance of $1.889 \AA$ and the terminal Mo-O distances of $1.701 \AA$ and $1.696 \AA$ are within the range of comparable distances found in the other complexes.

The remaining fac positions are occupied by coordination through the chemically identical N atoms of the pyrazolylborate ligand, $\mathrm{HB}\left(\mathrm{Me}_{2} \mathrm{pz}\right)_{3}$. Significant differences are found for the $\mathrm{Mo}-\mathrm{N}$ bond distances. The Mo- N distances for the N atoms trans to the terminal oxygens are 2.318 and $2.314 \AA$, while the $\mathrm{Mo}-\mathrm{N}$ distance for the N atom trans to the bridging oxygen is significantly shorter, at $2.208 \AA$. These differences in the $\mathrm{Mo}-\mathrm{N}$ bond distances are similar to the differences found for the binuclear $\mathrm{Mo}^{\mathrm{II}}$ compound of this trispyrazolylborate ligand, $\left[\mathrm{HB}\left(\mathrm{Me}_{2} \mathrm{pz}\right)_{3} \mathrm{Mo}-\right.$ $(\mathrm{CO})_{2} \mathrm{l}_{2} \mathrm{~S}$, which has sulfur as its bridging atom. There the Mo-N distances trans to terminal carbonyl groups are 2.247 and $2.260 \AA$, and the $\mathrm{Mo}-\mathrm{N}$ trans to bridging S is $2.188 \AA$ (Enemark, unpublished results).

We thank Drs Katsumoto Yamanouchi and Richard Ortega, Ms Shannath Merbs and Mr M. Ashby for
valuable assistance. We thank the National Institutes of Environmental Health Sciences (ES 00966) and the University of Arizona Computing Center for support of portions of this work.

References

Atovmyan. L. O. Sokovova. Y. A. \& Thachey. V. V. (1970). Dokl. Akad. Nauk SSSR, 195, 1355-1356.
Cotton, F. A.. Morehouse. S. M. \& Wood, J. S. (1964). Inorg. Chem. 3, 1603-1608.
Cromer, D. T. \& Waber. J. T. (1974). International Tables for X-ray Cry'stallography, Vol. IV. Birmingham: Kynoch Press.
Frenz. B. A. (1978). SDP. B. A. Frenz \& Associates. Inc.. College Station. Texas 77840, USA, and Enraf-Nonius. Delft. Holland.
Knobler, C. B., Robinson, W. T.. Wilkins. C. J. \& Wilson. A. J. (1983). Acta Cr!st. C 39, 443-445.

Marabella, C. P.. Enemark. J. H.. Miller. K. F.. Bruce. A. E.. Pariyadath. K.. Corbin. J. L. \& Stieff.l. E. I. (1983). Inorg. Chem. 22. 3456-3461.
Shibahara. T.. Kuroya. H.. Ool, S. \& Mori. Y. (1983). Inorg. Chim. Acta, 76. L315-L317.
Stomberg, R. (1968). Acta Chem. Scand. 22. 1076-1090.
Viossat. B. \& Rodier. N. (1981). Acta Crist. B37. 56-61.

The Structure of the Monobasic Lead Salt of 2,4,6-Trinitro-1,3-benzenediol (β Polymorph), $\mathrm{Pb}_{2}(\mathrm{OH})_{2}^{2+} \cdot \mathrm{C}_{6} \mathrm{HN}_{3} \mathrm{O}_{8}^{2-}$

By Melanie A. Pierce-Butler
Propellants, Explosives and Rocket Motor Establishment (PERME), Waltham Abbey, Essex EN9 1BP, England

(Received 4 November 1983: accepted 24 April 1984)

Abstract

M_{r}=691.5\), monoclinic, $P 2 / c, \quad a=30.24 \mathrm{~mm}^{-1}, F(000)=4864$, room temperature, final 16.606 (4) $, \quad b=16.635(8), \quad c=20.462$ (7) $\AA, \quad \beta=$ $127.5(14)^{\circ}, \quad U=4484.4 \AA^{3}, \quad Z=16, \quad D_{x}=$ $4.10 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and all bond lengths and angles not involving hydrogen have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39441 (19 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

